Chroma 63110A LED Load Simulator 
  • Spezieller LED-Modus für LED-Treiber Tests
  • Programmierbarer LED Arbeitswiderstand (Rd)
  • Programmierbarer Innenwiderstand (Rr) zur Simulation des LED Ripple Current
  • Schnelle Ansprechzeit bei PWM Dimmer Prüfung
  • Bis zu acht Kanäle in nur einem Modulgehäuse
  • 16-bit Präzisionsmessung von Spannung und Strom
  • Schutzfunktionen: OC, OP, OT Protection und OV Alarm


LED Load Simulator Chroma 63110A/63113A

Chroma LED Power Driver Test Solution Video

As a constant current source, the LED driver has an output voltage range with a constant output current. LED drivers are usually tested in one of the following ways:

  • With LEDs
  • Using resistors for loading
  • Using Electronic Loads in Constant Resistance (CR) mode, or Constant Voltage (CV) mode
    However all these testing methods each have their own disadvantages./OL>

    As shown on the V-I curve in figure 1, the LED has a forward voltage VF and a operating
    resistance (Rd). When using a resistor as loading, the V-I curve of the resistor is not able to
    simulate the V-I curve of the LED as shown in blue on figure 1. This may cause the LED driver
    to not start up due to the difference in V-I characteristic between the resistors and the LEDs.
    When using Electronic Loads, the CR and CV mode settings are set for when the LED is
    under stable operation and therefore, is unable to simulate turn on or PWM brightness control
    characteristics. This may cause the LED driver to function improperly or trigger it’s protection
    circuits. These testing requirements can be achieved when using a LEDs as a load; however,
    issues regarding the LED aging as well as different LED drivers may require different types of
    LEDs or a number of LEDs. This makes it inconvenient for mass production testing.
    LED V-I Characteristic

    Chroma has created the industries first LED operating mode for simulating LED loading with our 63110A load model from our 6310A series Electronic Loads. By setting the LED driver's output voltage, and current, the Electronic Load can simulate the LED’s loading characteristics. The LED’s forward voltage and operating resistance can also be set to further adjust the loading current and ripple current to better simulate LED characteristics. The 63110A design also has increased bandwidth to allow for PWM dimming testing. 

    Figure 2 shows the current waveform from a LED load. Figure 3 shows the current waveform from 63110A's LED mode load function. From figures 2 and 3, the start up voltage and current of the LED driver is very similar. Figure 4 shows the dimming current waveform of the LED. Figure 5 shows the dimming current waveform when using 63110A as a load.
    LED Load Current

    The internal resistance (Rr) can be adjusted to simulate the LED driver output ripple current. The traditional E-load can not simulate the ripple current of LED shown as Figure 6. Figure 7 shows the ripple current waveform from a LED load. Figure 8 shows the ripple current waveform from the 63110A LED mode load function.
    LED Load Ripple Current

    Figure 9 shows the current waveform from a resistive load. Figure 10 shows the current waveform from a CR mode of an Electronic Load loading. Figure 9 and 10 current waveform differs significantly from that of LED loading, especially the voltage and current overshoot, which may cause the LED driver to go into protection. Using resistive load or CR mode to test LED drivers may cause the LED drivers to fail to turn on as shown in Figure 11.
    LED Load Resistive Loadiing


Model Power Operation Voltage Current LO/HI
63110A CH1: 100W
CH2: 100W
0~500V 0~0.6A / 0~2A 
63113A 300W 0~300V 0~5A / 0~20A 
Unsere Imagebroschüre